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Approximation Algorithms for Restless Bandit Problems

Sudipto Guha∗ Kamesh Munagala† Peng Shi‡

Abstract

In this paper, we consider the restless bandit problem, which

is one of the most well-studied generalizations of the cel-

ebrated stochastic multi-armed bandit problem in decision

theory. In its ultimate generality, the restless bandit prob-

lem is known to be PSPACE-Hard to approximate to any

non-trivial factor, and little progress has been made on this

problem despite its significance in modeling activity alloca-

tion under uncertainty. We make progress on this problem

by showing that for an interesting and general subclass that

we term Monotone bandits, a surprisingly simple and in-

tuitive greedy policy yields a factor 2 approximation. Such

greedy policies are termed index policies, and are popular

due to their simplicity and their optimality for the stochas-

tic multi-armed bandit problem. The Monotone bandit

problem strictly generalizes the stochastic multi-armed ban-

dit problem, and naturally models multi-project scheduling

where the state of a project becomes increasingly uncertain

when the project is not scheduled. We develop several novel

techniques in the design and analysis of the index policy.

Our algorithm proceeds by introducing a novel “balance”

constraint to the dual of a well-known LP relaxation to the

restless bandit problem. This is followed by a structural

characterization of the optimal solution by using both the

exact primal as well as dual complementary slackness con-

ditions. This yields an interpretation of the dual variables

as potential functions from which we derive the index policy

and the associated analysis.

1 Introduction

The multi-armed bandit (MAB) problems are funda-
mental to stochastic decision theory. These problems
model activity allocation under uncertainty and have
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numerous applications and a vast literature (see [5] and
references therein). The most well-known variant is the
stochastic MAB problem, which is stated as follows:
There is a bandit with n independent arms (think of
these as different projects or jobs). Each arm i can be
in one of several states denoted Si. At any time step,
the player can play one arm. If arm i in state k ∈ Si
is played, it transitions in a Markovian fashion to state
j ∈ Si w.p. qikj and yields reward rik ≥ 0. The states
of arms which are not played stay the same. There is
a discount factor β ∈ (0, 1). Given the initial states of
the arms, the goal is to find a policy for playing the
arms in order to maximize one of the following infinite
horizon quantities:

∑∞
t=0Rtβ

t (discounted reward), or
limt→∞

1
t

∑∞
t=0Rt (average reward), where Rt is the ex-

pected reward of the policy at time step t.
The input to an algorithm specifies the rewards and

transition probabilities for each arm, and has size linear
in n. The output is a policy: A (possibly implicit)
specification fixing upfront which arm (or distribution
over arms) to play for every possible joint state of the
arms. We seek poly-time algorithms (in terms of the
input size) that output (near-) optimal policies with
poly-size specifications, with the property that for each
execution step, the action for the current joint state can
be computed from the specification in poly-time.

Since a policy is a fixed (possibly randomized)
mapping from the exponential (or possibly infinite) size
joint state space of n arms to actions, ensuring poly-time
computation and execution often requires simplifying
the description of the optimal policy using the problem
structure. The stochastic MAB problem is the most
well-known decision problem for which such a structure
is known: The optimal policy is a greedy policy termed
the Gittins index policy [11, 29, 5]. An index policy
specifies a single number called “index” for each state
k ∈ Si for each arm i, and at every time step, plays
the arm whose current state has the highest index.
In addition to allowing for poly-time computation and
execution, index policies are also optimal for several
generalizations of the stochastic MAB, such as arm-
acquiring bandits [32] and branching bandits [31]; in
fact, a general characterization of problems for which
index policies are optimal is now known [6].

Not all variants of the stochastic MAB problem
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admit to optimal index policies or efficient solutions –
the most fundamental (and well known) of these is the
restless bandits problem proposed by Whittle [33]. This
problem is the same as the stochastic MAB problem,
except that when arm i in state k ∈ Si is not played,
it’s state evolves to j ∈ Si with probability q̃ikj .
Therefore, the state of the arm varies according to an
active transition matrix q when the arm is played, and
according to a passive transition matrix q̃ if the arm is
not played. Unlike the stochastic MAB problem which
is interesting only in the discounted reward setting1, the
restless bandit problem is interesting even in the infinite
horizon average reward setting – this is the setting in
which this problem has been typically studied, and
which we consider in this paper. For these problems, it
is relatively straightforward to show that in general, any
index policy can be a poor approximation to optimal; in
fact, Papadimitriou and Tsitsiklis [27] show that for n
arms, computing the optimal policy is PSPACE-hard.
Their proof also rules out any poly-time algorithm to
decide if the optimal reward is more than zero, hence
ruling out any approximation algorithm as well.

On the positive side, Whittle [33] presents a poly-
size LP relaxation of the problem that has variables
for single arms. In this relaxation, the constraint that
exactly one arm is played per time step is replaced by
the constraint that one arm in expectation is played per
time step ; this is the only constraint connecting the
arms. (Such decision problems have been termed weakly
coupled systems [19, 1].) The Whittle index [33] is based
on the Lagrangean of this relaxation, and generalizes the
Gittins index. However, this and subsequent works [7,
19, 1] present little in terms of performance analysis.

Monotone Bandits. We revisit the restless ban-
dit problem, and ask: Is there a natural subclass for
which index policies are provably near-optimal? For the
same subclass, can Whittle’s LP relaxation be shown to
have small gap w.r.t. the optimal policy? We show pos-
itive answers to both these questions for a general sub-
class which we term Monotone bandits. The problem
formulation is similar to the stochastic MAB – there are
n arms, state of an arm remains the same if the arm is
not played, and when arm i in state k is played, it yields
reward rik. However, there is an “escape probability”
f ik(t) ∈ [0, 1], so that if arm i in state k is played after
t steps, its transition probability to j 6= k is qikjf

i
k(t).

(With the remaining probability it remains at state k.)
The crucial property we enforce is that f ik(t) is mono-
tonically non-decreasing in t.

1Playing the arm with the highest long-term average reward

exclusively is the trivial optimal policy for stochastic MAB in the
infinite-horizon average reward setting.

Since stochastic MAB corresponds to f ik(t) = 1, the
Monotone bandit problem strictly generalizes it. The
Monotone bandit problem naturally models schedul-
ing scenarios where the arm is a resource/machine which
recovers strength when rested, so that when rested for
more steps and played, the probability that the arm is
actually played, f ik(t), increases. When actually played,
the state evolves according to transition matrix q, else
nothing happens. The Monotone bandit problem also
models certain Partially Observable Markov Decision
Processes (or POMDPs) where the state of each arm
is continuously changing and unobservable except when
the arm is played. The non-decreasing property of f
corresponds to saying that the longer the time elapsed
since last play, the more likely the arm is to be in a
different state. A special case of this is the Feedback
MAB problem discussed below.

Our Results: We provide a 2 approximate index
policy for Monotone bandits based on a novel duality-
based framework using a subtle modification to Whit-
tle’s LP. We further show that this relaxation has an
Ω(1) gap, so that the above result is nearly best possi-
ble. In a full version [18], we use our techniques to show
O(1) guarantees for Whittle-type indexes in such con-
texts, and finally extend our techniques to solve other
related restless bandit problems. Except one (the Feed-
back MAB), these problems did not have any previous
performance guarantees. We discuss the previous work
first to explain the generalizations and improvements.

The Feedback MAB, studied independently
by [15, 35, 20, 26], is a special case of the Monotone
bandit problem. (Refer Appendix A for the reduction.)
In this problem, there is a bandit with n independent
arms. Arm i has two states: The good state gi yields
reward ri, and the bad state bi yields no reward. The
state of each arm evolves according to a bursty 2-state
Markov process (with transition probabilities specified
as input); the evolution does not depend on whether the
arm is played or not at a time slot. The evolution of
states for different arms are independent. Any policy
chooses at most one arm to play every time slot. Each
play yields reward depending on the state of the arm,
and in addition, reveals to the policy the current state of
that arm. When the arm is not played, the underlying
state cannot be observed and must be inferred from the
last time the arm was played. As motivation, in wire-
less channel selection [15, 35, 20], the bandit is a wire-
less node with access to multiple noisy channels (arms).
The state of the arm is the state (good/bad) of the chan-
nel, which varies in a Markovian fashion. Playing the
arm corresponds to transmitting on the channel, yield-
ing reward if the transmission is successful (good chan-
nel state), and furthermore, revealing to the transmitter
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the current state of the channel. In Unmanned Aerial
Vehicle (UAV) routing [26], the arms are locations where
interesting events follow 2-state Markov processes (in-
teresting/uninteresting); visiting a location by the UAV
corresponds to playing the arm, and yields reward if an
interesting event is detected.

The previous result for this problem was a 68 ap-
proximation [15]. As a consequence of our identifica-
tion of the Monotone bandit problem as the correct
absraction, we improve the approximation to 2 + ε.

Furthermore, since we have a different solution tech-
nique, we can gracefully handle several generalizations
motivated by the applications described above: Costs
for switching into a bandit arm that are subtracted from
the rewards; costs for observing the state of an arm
without utilizing its reward; and multiple simultaneous
plays of varying duration. We note that these gener-
alizations lead to negative rewards and blocking plays,
and cannot be handled by the solution technique in [15].
We discuss all these extensions in the full version [18].
Finally, our techniques also extend to similar restless
bandit problems which do not fall into the Monotone
bandits framework: We show a 2-approximation for
non-preemptive machine replenishment in [18].

The Index Policy. Our 2-approximation for the
Monotone bandits problem is achieved by an index
policy with surprisingly simple (and in hindsight, in-
tuitive) structure. The description of this policy is as
follows: Solve the dual of Whittle’s relaxation with an
added “balance” constraint. The optimal solution yields
a classification of the states of each arm into high reward
“good” states and low reward “bad” states. When an
arm is in a good state, the policy plays the arm repeat-
edly until it becomes bad. In a bad state, the policy
leaves the arm alone for a fixed period of time, allowing
it to “recover” and gain a sufficiently high probability
of transitioning into good states. When no arm is in a
good state, the policy plays any bad arm that has waited
long enough to “recover”. This corresponds to the fol-
lowing index: Add a dummy arm that corresponds to
doing nothing, with index 0. For any real arm, when it
is in bad state and recovering, its index is −1. When it
has recovered, its index becomes 1. When in good state,
its index is 2. The policy therefore exploits every good
state as much as it can, and if no arm is in a good state,
it explores the bad arms that have recovered, until one
of them transitions to a good state.

Our index construction depends on the LP relax-
ation, akin to the index constructed by Bertsimas and
Nino-Mora [7]. This is unlike the Gittins and Whittle
indexes, where the index for an arm does not depend at
all on the parameters of the other arms. Despite this
difference, we show in the full paper [18] that for Feed-

back MAB, our policy is equivalent to a slight but
natural modification of Whittle’s index to favor myopic
exploitation. This yields one of the first analyses of such
indexes used in practice in this context.

Assumptions and Lower Bounds. In order to
ensure poly-time computation and execution, we insist
that the f ik(t) be either piece-wise linear with poly-size
specification, or certain compactly specified differen-
tiable functions (as with Feedback MAB). Given the
infinite-horizon setting, we restrict ourselves to ergodic
policies. Notice that since the state of an arm depends
on how long it has rested, the state space even for a sin-
gle arm could be exponential in size. Despite this, our
results show the existence of a poly-time computable and
executable index policy that is a 2-approximation2. Our
index depends on time elapsed since that arm was last
played; for Feedback MAB, it was shown in [15] that
such indexes are necessarily some constant factor worse
than the optimal policy, so a constant-factor approxi-
mation is best-possible given our solution structure.

We show in the full paper [18] that even when f ik(t)’s
are piece-wise linear with poly-size specification, the
Monotone bandit problem is NP-Hard. We further
show that the requirement that f is monotone in t is
necessary; relaxing this makes the problem nε hard to
approximate, where n is the number of arms.

In Appendix A, we show that the integrality gap of
Whittle’s LP is at least e/(e− 1) ≈ 1.58, and therefore
our factor 2 analysis is almost the best possible against
LP bounds. Interestingly, relaxing the separability of
transition probabilities, so that each k to j transition
is an arbitrary (but still monotone) function, qikj(t), of
time, leads to unbounded integrality gap (see [18]).

Techniques. The chief technical highlight of the
paper is the novel “dual balancing” condition. In
more detail, for Monotone bandits, we first re-write
Whittle’s LP so that the dual has an interpretation in
terms of rewards and potentials for states (Section 3).
Next, we add a “dual balancing” condition and solve the
dual with this added constraint (Section 4). We then
show using complementary slackness conditions on the
optimal solution that the rewards obtained by playing
the arms are tightly related to the dual objective via
the potential variables (Section 4.1). In fact, the dual
naturally splits the states of each arm into exploration
or “bad” states, and exploitation or “good” states. We
then use the tight constraints in the dual to construct an
index policy (Section 5), and we analyze its performance
by carefully constructing a piece-wise linear potential
function using the variables from the dual solution

2We note that a 1 + ε approximation can be found in time
exponential in the input specification by dynamic programming.
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(Section 5.1). The analysis crucially depends on the
Monotone property of f as well as the balancing
condition that we add.

Our solution technique differs from primal-dual ap-
proximation algorithms [30] and online algorithms [34]
that relax either the primal or the dual complementary
slackness conditions using a careful dual-growing proce-
dure. Our index policy and associated potential func-
tion analysis crucially exploit the structure of the opti-
mal dual solution that is gleaned using both the exact
primal as well as dual complementary slackness con-
ditions. Further, our notion of dual balancing is very
different from that used by Levi et al [22] for designing
online algorithms for stochastic inventory management.

Roadmap. For the Monotone bandit problem,
we show a 2 approximation in the main body of the
paper. Since the Feedback MAB is a special case of
Monotone bandits, the above results in a 2+ε approx-
imation, due to a 1+ε approximation to the LP solution,
while preserving the required duality structure. This,
along with the e/(e−1) integrality gap for Whittle’s LP
is discussed in Appendix A. Due to lack of space the re-
sults on generalizations of Monotone bandits, analysis
of Whittle-type indexes for Feedback MAB, and the
approximation algorithm for non-preemptive machine
replenishment are presented in the full version [18].

Related Work. The Feedback MAB problem is
perhaps the simplest instance of a multi-armed bandit
problem where a changing environment influences the
evolution of the rewards of the arms. This general
paradigm has received significant interest recently in
computational learning [2, 4, 9, 21, 28]. In closely
related but independent work, Slivkins and Upfal [28]
consider the modification of Feedback MAB where
the underlying state of the arms vary according to a
reflected Brownian motion with bounded variance. As
discussed in [28], these classes of problems are very
different, even requiring different performance metrics.

The results in [14, 12, 16, 17] consider variants of the
stochastic MAB where the environment does not change
and only a limited time is alloted to learning about
this environment. Although several of these results use
LP rounding, they have little connection to the duality
based framework considered here.

A different restless bandit problem of pre-emptive
machine replenishment [5, 13] is considered in [25],
where Whittle’s index is shown to be a 1.51 approxima-
tion. However, the techniques used to show that result
are very different from the framework developed here.
In fact, our techniques show a 2 approximation for the
more general problem of non-preemptive machine re-
plenishment, for which Whittle’s index is an arbitrarily
poor approximation (refer the full paper [18]).

2 Monotone Bandits: Preliminaries

We repeat the problem statement: There are n bandit
arms. Each arm i can be in one of K states denoted
Si = {σi1, σi2, . . . , σiK}. Each state σik is associated with
a set of transition probability values qi(k, j) so that∑
j 6=k q

i(k, j) ≤ 1. Furthermore, the state σik ∈ Si is
associated with an “escape probability” f ik(t) ∈ [0, 1] for
positive integers t. When the arm is not played, its state
remains the same and it does not fetch reward. Suppose
the arm is in state σik and is played next after t ≥ 1
steps. Then, it gains reward rik ≥ 0, and transitions
to one of the states σij 6= σik w.p. qi(k, j)f ik(t), and
with the remaining probability stays in state σik. For
notational convenience, we denote σik simply as k; the
arm it refers to will be clear from the context.

The transition probabilities for different arms are
independent. At most one arm is played per step. The
goal is to find a policy for playing the arms so that the
infinite horizon time-average reward is maximized.

Assumptions. For simplicity of exposition, we
assume that for each arm i, the graph, where the vertices
are k ∈ Si and a directed edge (j, k) exists if qi(j, k) > 0,
is strongly connected. Since we consider the infinite
horizon time average reward, assume that the policy is
ergodic and can choose the start state of each arm.

We need the following key property about the
transition probabilities for designing the index policy.

Monotone Property: For every arm i and state
k ∈ Si, we have: f ik(t) ≤ f ik(t+ 1) for every t. For poly-
nomial input size, we assume these monotone functions
are piece-wise linear with poly-size specification.

Definition 1. Given i, k ∈ Si, f ik(t) is specified
as the piece-wise linear function that passes through
breakpoints (t1 = 1, f ik(1)), (t2, f ik(t2)), . . . , (tm, f ik(tm)).
Denote the set {t1, t2, . . . , tm} as Wi

k. Therefore, for
two consecutive points t1, t2 ∈ Wi

k with t1 < t2, the
function f ik is specified at t1 and t2. For t ∈ (t1, t2), we
have f ik(t) = ((t2 − t)f ik(t1) + (t − t1)f ik(t2))/(t2 − t1).
For t ≥ tm, we have f ik(t) = f ik(tm). We assume that
Wi
k has poly-size specification.

Even with these assumptions, we show NP-
Hardness in the full paper [18], and further show that
when the monotone property is relaxed, the problem
becomes nε-hard to approximate. As shown in Ap-
pendix A, our algorithms can also be extended to certain
compactly specified differentiable functions f .

3 Whittle’s LP and its Dual

We first present the linear programming relaxation
due to Whittle [33]. We do not solve this relaxation.
Instead, we actually solve the dual of a slightly different
relaxation which we present in the next section. In this
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section, we simply present the relaxation, its dual, and
poly-size equivalent versions.

For each arm i and k ∈ Si, we have variables
{xikt, t ≥ 1} and {yikt, t ≥ 1}. These variables capture
the probabilities in the optimal policy that when the
arm is in state k and was last played t steps ago, it is
played and not played respectively. These quantities are
well-defined for ergodic policies. Therefore, the linear
program (Whittle) in Fig. 1 is clearly a relaxation of
the optimal policy. Let its optimal value be denoted
OPT . The program effectively encodes the constraints
on the evolution of the state of each arm separately,
connecting them only by the constraint that at most
one arm is played in expectation every step. This LP has
infinite size, and we will fix that aspect in this section.

We first eliminate the yikt variables by substitutions
to obtain the following equivalent formulation.

Maximize
n∑
i=1

∑
k∈Si

∑
t≥1

rikx
i
kt

∑n
i=1

∑
k∈Si

∑
t≥1 x

i
kt ≤ 1∑

k∈Si

∑
t≥1 tx

i
kt ≤ 1 ∀i∑

j∈Si,j 6=k
∑
t≥1 x

i
ktq

i(k, j)f ik(t)
=
∑
j∈Si,j 6=k

∑
t≥1 x

i
jtq

i(j, k)f ij(t) ∀k ∈ Si
xikt ≥ 0 ∀i, k, t

We now show that the LP has polynomial size when
the f ik are piece-wise linear with poly-size specification.
In Appendix A, we show that the LP can also be solved
to arbitrary accuracy for many differentiable functions
f (e.g., the Feedback MAB problem [15]). Take
the dual of the above relaxation. The first constraint
has multiplier λ, the second set of constraints have
multipliers hi, and the final equality constraints have
multipliers pik. For notational convenience, define:

∆P ik =
∑

j∈Si,j 6=k

(
qi(k, j)(pij − pik)

)
We obtain the following dual:

Minimize λ+
n∑
i=1

hi

λ+ thi ≥ rik + f ik(t)∆P ik ∀i, k ∈ Si, t ≥ 1
λ, hi ≥ 0 ∀i

Recall from Definition 1 thatWi
k is the set of t’s for

which f ik is specified in the input. Since f ik(t) is piece-
wise linear, for two consecutive break-points t1 < t2 in
Wi
k, the constraint λ+thi ≥ rik+f ik(t)∆P ik is true for all

t ∈ [t1, t2] iff it is true at t1 and at t2. This means that
the constraints for t /∈ Wi

k are redundant. Therefore,
the above dual is equivalent to the following:

Minimize λ+
n∑
i=1

hi (D1)

λ+ thi ≥ rik + f ik(t)∆P ik ∀i, k ∈ Si, t ∈ Wi
k

λ, hi ≥ 0 ∀i
Taking the dual of the above program, we finally

obtain the polynomial size relaxation for Monotone
bandits, which we denote (Whittle-Poly). This is
shown in Figure 2, and its value is precisely OPT .

4 The Balanced Linear Program

We do not solve Whittle’s relaxation. Instead, we solve
the modification of the dual (D1), which we denote
(Balance). The additional constraint in (Balance) is
the constraint λ =

∑n
i=1 hi, which is a “dual balancing”

condition that makes our later analysis possible.

Minimize λ+
n∑
i=1

hi (Balance)

λ+ thi ≥ rik + f ik(t)∆P ik ∀i, k ∈ Si, t ∈ Wi
k

λ =
∑n
i=1 hi

λ, hi ≥ 0 ∀i

The primal linear program corresponding to (Bal-
ance) is the following (where we place an unconstrained
multiplier ω to the final constraint of (Balance)):

Maximize
n∑
i=1

∑
k∈Si

∑
t∈Wi

k

rikx
i
kt (LPScale)

∑n
i=1

∑
k∈Si

∑
t∈Wi

k
xikt ≤ 1− ω∑

k∈Si

∑
t∈Wi

k
txikt ≤ 1 + ω ∀i∑

j 6=k
∑
t∈Wi

k
xiktq

i(k, j)f ik(t)
=
∑
j 6=k

∑
t∈Wi

j
xijtq

i(j, k)f ij(t) ∀i, k
xikt ≥ 0 ∀i, k, t

4.1 Using Complementary Slackness As noted
above, the first step of the algorithm is to solve the
linear program (Balance). Clearly the value of this
LP is at least OPT . We first interpret the dual along
with the balancing condition.

The dual can be seen as a debtor rationing a
steady-stream income in order to pay-off the reward
of the original system at every step. Suppose that an
adversary is controlling the original system, and demand
reward rik when he plays arm i in state k. To pay-off
the adversary, the debtor gets income λ +

∑
i hi each

time step. Of this, the debtor stores an amount hi in
arm i, which he can access later. The debtor uses the

32 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited. 



www.manaraa.com

Maximize

nX
i=1

X
k∈Si

X
t≥1

ri
kxi

kt (Whittle)

Pn
i=1

P
k∈Si

P
t≥1 xi

kt ≤ 1P
k∈Si

P
t≥1

`
xi

kt + yi
kt

´
≤ 1 ∀i = 1, 2, . . . , n

xi
kt+1 + yi

kt+1 = yi
kt ∀i, k ∈ Si, t ≥ 1P

t≥2 xi
kt +

P
j∈Si,j 6=k

P
t≥1

`
xi

jtq
i(j, k)f i

j (t)− xi
ktq

i(k, j)f i
k(t)

´
= yi

k1 ∀i, k ∈ Si

xi
kt, y

i
kt ∈ [0, 1] ∀i, k ∈ Si, t ≥ 1

Figure 1: The linear program (Whittle).

Maximize

nX
i=1

X
k∈Si

X
t∈Wi

k

ri
kxi

kt (Whittle-Poly)

Pn
i=1

P
k∈Si

P
t∈Wi

k
xi

kt ≤ 1P
k∈Si

P
t∈Wi

k
txi

kt ≤ 1 ∀iP
j∈Si,j 6=k

P
t∈Wi

k
xi

ktq
i(k, j)f i

k(t) =
P

j∈Si,j 6=k

P
t∈Wi

j
xi

jtq
i(j, k)f i

j (t) ∀k ∈ Si

xi
kt ≥ 0 ∀i, k ∈ Si, t ∈ Wi

k

Figure 2: The linear program (Whittle-Poly).

additional λ to pay-off the adversary for the current
time step. Thus, when the adversary plays arm i in
state k, the debtor has a total of λ+ thi at his disposal.
This corresponds to the LHS of the dual constraint.

Since the rewards differ for every state, the debtor
maintains a certain amount of money, or “potential” at
each state: When arm i enters state k, the debtor pays
pik towards the state. When the adversary plays the arm
i in state k, the expected amount the debtor has to pay
for the new state minus the pik he can remove from the
old state, is exactly f ik(t)

∑
j 6=k q

i(k, j)(pij − pik). With
this accounting scheme, the expected amount the debtor
has to pay out is rik plus the above quantity, which is
the RHS of the dual constraint.

Therefore, the dual finds a the minimum income
that the debtor needs in order to stay solvent over
the long term. The balancing condition we impose in
addition to the dual advises the debtor to equally exploit
the two ways of paying off the adversary: paying the
adversary now with λ or storing hi in the arm to pay
the adversary later. This intuitive condition will be
essential in our 2-approximation analysis.

We now show the following properties of the optimal
solution to (Balance) using complementary slackness
conditions between (Balance) and (LPScale). From
now on, we only deal with the optimal solutions to
the above programs, so all variables correspond to the
optimal setting.

Lemma 4.1. Recall that OPT is the optimal value to
(Whittle-Poly). Since any feasible solution to (Bal-

ance) is feasible to (D1), in the optimal solution to
(Balance), λ =

∑n
i=1 hi ≥ OPT/2.

The next lemma is the crux of the analysis, where
for any arm being played in any state, we use comple-
mentary slackness to explicitly relate the dual variables
to the reward obtained. Note that unlike the analyses of
primal-dual algorithms, our proof needs to use both the
exact primal as well as dual complementary slackness
conditions. This aspect requires us to actually solve the
dual optimally.

Lemma 4.2. One of the following is true for the optimal
solution to (Balance): Either there is a trivial 2-
approximation by repeatedly playing the same arm; or
for every arm i with hi > 0 and for every state k ∈ Si,
there exists t ∈ Wi

k such that the following LP constraint
is tight with equality.

(4.1) λ+ thi ≥ rik + f ik(t)∆P ik

Proof. Note that if ω ≤ −1 or ω ≥ 1, then the values of
(LPScale) is 0, but the optimal value of (LPScale)
is at least OPT > 0. Thus, in the optimal solution to
(LPScale), ω ∈ (−1, 1).

The optimal solutions to (Balance) and (LP-
Scale) satisfy the following complementary slackness
conditions (recall from above that ω > −1 so that
1 + ω > 0):

(4.2) hi > 0 ⇒
∑
k∈Si

∑
t∈Wi

k

txikt = 1 + ω > 0

33 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited. 



www.manaraa.com

(4.3) λ+ thi > rik + f ik(t)∆P ik ⇒ xikt = 0

Suppose that for some i such that hi > 0, and for
some k ∈ Si, we have λ+ thi > rik + f ik(t)∆P ik for every
t ∈ Wi

k. By condition (4.3), xikt = 0 ∀t ∈ Wi
k, which

trivially implies that xiktf
i
k(t) = 0 ∀t ∈ Wi

k.
Now, given that for a certain arm i and state k,

xiktf
i
k(t) = 0 ∀t. Therefore, in the following constraint

in (LPScale):∑
l 6=k

∑
t∈Wi

k

xiktf
i
k(t)qi(k, l) =

∑
l 6=k

∑
t∈Wi

l

xiltf
i
l (t)q

i(l, k)

the LHS is zero because xiktf
i
k(t) = 0, which means the

RHS is zero. Since all variables are non-negative, this
implies that for any j ∈ Si with qi(j, k) > 0, we have
xijtf

i
j(t) = 0 for all t ∈ Wi

j .
Recall (from Section 2) that we assumed the graph

on the states with edges from j to k if qi(j, k) > 0 is
strongly connected. Therefore, by repeating the above
argument, we get ∀j, t ∈ Wi

j , x
i
jtf

i
j(t) = 0.

By Condition (4.2), since hi > 0, there exists j ∈ Si
and t ∈ Wi

j , such that xijt > 0 (or else the sum in
Condition (4.2) is zero). By what we proved in the
previous paragraph, this implies that f ij(t) = 0, which
implies that f ij(1) = 0 by the Monotone property.
Since xijt > 0, using Condition (4.3) and plugging in
f ij(t) = 0, we get λ+ thi = rij . Moreover, by plugging in
f ij(1) = 0 into the t = 1 constraint of (Balance), we
get λ+hi ≥ rij . These two facts imply that λ+hi = rij .
The above implies that the policy that starts with arm
i in state j and always plays this arm obtains per-step
reward λ+ hi > OPT/2.

In the remaining discussion, we assume that the
above lemma does not find an arm i that yields reward
at least OPT/2. This means that ∀i, k, there exists
some t ∈ Wi

k that makes Inequality (4.1) tight.

Lemma 4.3. For any arm i such that hi > 0, and state
k ∈ Si, if ∆P ik < 0, then:

λ+ hi = rik + f ik(1)∆P ik

Proof. By Lemma 4.2 and our assumption above, In-
equality (4.1) in Lemma 4.2 is tight for some t ∈ Wi

k. If
it is not tight for t = 1, then since f ik(t) is non-decreasing
in t and since ∆P ik < 0, it will not be tight for any t.
Thus, we have a contradiction.

5 The Index Policy

Start with the optimal solution to (Balance). First
throw away the arms for which hi = 0. By Lemma 4.1,
for the remaining arms,

∑
i hi ≥ OPT/2. Define the

following quantities for each of these arms.

Definition 2. For each i (hi > 0 by assumption) and
state k ∈ Si, let tik be the smallest value of t ∈ Wi

k for
which λ + thi = rik + f ik(t)∆P ik in the optimal solution
to (Balance). By Lemma 4.2, tik is well-defined for
every k ∈ Si.

Definition 3. For arm i, partition the states Si into
states Gi, Ii as follows:

1. k ∈ Gi if ∆P ik < 0. (By Lemma 4.3, tik = 1.)

2. k ∈ Ii if ∆P ik ≥ 0.

With the notation above, the policy is now presented in
Figure 3. In this policy, if arm i has been in state k ∈ Ii
for less than tik steps, it is defined to be “not ready” for
play. Once it has waited for tik steps, it becomes “ready”
and can be played. Moreover, if arm i moves to a state
in k ∈ Gi, it is continuously played until it moves to a
state in Ii.

Index Policy

1. Exploit: Some arm i moves to a state k ∈ Gi:
(a) Play this arm exclusively as long as it remains

in a state in Gi.
(b) Goto step (2).

2. Explore:
(a) Play any “ready” arm i in state k ∈ Ii.

(If no arm is “ready”, do not play at this step.)
(b) If the arm moves to state in Gi:

goto Step (1), else goto Step (2a).

Figure 3: The Index Policy.

Intuitively, the states in Gi are the “exploitation”
or “good” states. (In section 5.1, we analyze the policy
using a potential function, and in these states, the
potentials decrease in expectation on playing. This
means that the analysis is using the high rewards earned
in these states to balance out the lower rewards in
other states.) On the contrary, the states in Ii are
“exploration” or “bad” states, so the policy waits until
it has a high enough probability of exiting these states
before playing them. In both cases, tk corresponds to
the “recovery time” of the state, which is 1 in a “good”
state but could be large in a “bad” state.

Although we have not explicitly defined our policy
as an index policy, we can easily describe it using the
following indices. Place a dummy arm yielding no
reward and having index 0. When the state of arm i
is good state k ∈ Gi, the index is 2. When the arm is in
bad state k ∈ Ii and not “ready”, its index is −1, and
when it gets “ready”, the index is 1. Ties are broken
arbitrarily.
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5.1 Lyapunov Function Analysis We use a Lya-
punov (potential) function argument to show that the
policy described in Figure 3 is a 2-approximation. De-
fine the potential for each arm at any time as follows.
(Recall the definition of tik from Definition 2, as well as
the quantities λ, hi from the optimal solution of (Bal-
ance).)

Definition 4. If arm i moved to state k ∈ Si some
y steps ago (y ≥ 1 by definition), the potential is
pik + hi(min(y, tik)− 1).

Therefore, whenever the arm i enters state k, its
potential is pik. If k ∈ Ii, the potential then increases
at rate hi for tik − 1 steps, after which it remains fixed
until the arm is played. Our policy plays arm i only if
its current potential is pik + hi(tik − 1).

We finally complete the analysis in the following
lemma. The proof crucially uses the “balance” property
of the dual, which states that λ =

∑
i hi ≥ OPT/2.

Let ΦT denote the total potential at any step T and
let RT denote the total reward accrued until that step.
Define the function LT = t · OPT/2 − RT − ΦT . Let
∆RT = RT+1 −RT and ∆ΦT = ΦT+1 − ΦT .

Lemma 5.1. LT is a Lyapunov function. i.e.,
E[LT+1|LT ] ≤ LT . Equivalently, at any step:

E[∆RT + ∆ΦT |RT ,ΦT ] ≥ OPT/2

Proof. At a given step, suppose the policy does nothing,
then all arms are “not ready”. The total increase in
potential is precisely ∆ΦT =

∑
i hi ≥ OPT/2.

On the other hand, suppose that the policy plays
arm i, which is currently in state k and has been in that
state for y ≥ tik steps. The change in reward ∆RT = rik.
Moreover, the current potential of the arm must be
ΦT = pk + hi(tik − 1). The new potential follows the
following distribution:

ΦT+1 =

{
pij , with probability f ik(y)qi(k, j) ∀j 6= k

pik, with probability 1−
∑
j 6=k f

i
k(y)qi(k, j)

Therefore, if arm i is played, the change in potential is:

E[∆ΦT ] = f ik(y)
∑

j∈Si,j 6=k

(
qi(k, j)(pij − pik)

)
− hi(tik − 1)

From the description of the Index policy, y = tik = 1 if
k ∈ Gi. Therefore, y might be strictly greater than tik
only when k ∈ Ii. In that case ∆P ik ≥ 0 by Definition 3,
so that f ij(y)∆P ik ≥ f ij(t

i
k)∆P ik by the Monotone

property (since y ≥ tik).

Therefore, for the arm i being played, regardless of
whether k ∈ Gi or k ∈ Ii,

∆RT + E[∆ΦT ] = rik + f ik(y)∆P ik − hi(tik − 1)
≥ rik + f ik(tik)∆P ik − hitik + hi

= λ+ hi > OPT/2

where the last equality follows from the definition of
tik (Definition 2). Since the potentials of the arms not
being played do not decrease (since all hl > 0), the
total change in reward plus potential is at least OPT/2.
Refer Figure 4 for a “picture proof” when k ∈ Ii. This
completes the proof.

By their definition, the potentials ΦT are bounded
independent of the time horizon, by telescoping sum-
mation, the above lemma implies that limT→∞

E[RT ]
T ≥

OPT/2. We finally have:

Theorem 5.1. The Index policy is a 2 approximation
for Monotone bandits.
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Figure 4: Proof of Lemma 5.1. Define ∆P (t) =
f ik(t)

∑
j∈Si,j 6=k

(
qi(k, j)(pij − pik)

)
. The growth of the

potential is shown on the lower piece-wise linear func-
tion. The upper set of curves represent the LHS and
RHS of the LP constraints for given i, k. The tight point
tik is where the potential switches to being constant.

A Feedback MAB Problem

In this problem, which was studied independently by
[15, 35, 20, 26] in the contexts of scheduling trans-
missions across multiple wireless channels and routing
Unmanned Aerial Vehicles (UAVs), there is a bandit
has n independent arms. Arm i has two states: The
good state gi yields reward ri, and the bad state bi
yields no reward. The evolution of state of the arm
follows a bursty Markovian process which does not de-
pend on whether the arm is played or not at a time
slot. Let sit denote the state of arm i at time t.
Then denote the transition probabilities of the Markov
chain as follows: Pr[si(t+1) = gi|sit = bi] = αi and
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Pr[si(t+1) = bi|sit = gi] = βi. The αi, βi, ri values
are specified as input. To ensure “burstiness”, assume
αi + βi ≤ 1− δ for some small δ > 0 specified as part of
the input. The evolution of states for different arms are
independent. Any policy chooses at most one arm to
play every time slot. Each play yields reward depend-
ing on the state of the arm, and in addition, reveals to
the policy the current state of that arm. The goal of
the policy is to judiciously play the arms to maximize
the infinite horizon time average reward.

In this section, we show that this problem is a
special case of Monotone bandits. We further show
how to solve the LP approximately in polynomial time.
Finally, we show that the gap of Whittle’s relaxation
is e/(e − 1) ≈ 1.58, indicating that our analysis for
Monotone bandits is reasonably tight.

For integer t ≥ 1, define: vit = Pr[sit = gi|si0 = bi]
and uit = Pr[sit = gi|si0 = gi]. Focus on a particular
arm i, and omit the subscript i. For integer t ≥ 1,
define γt = (1 − α − β)t. We have: vt = α

α+β (1 − γt)
and 1− ut = β

α+β (1− γt). It follows that 1− ut and vt
are increasing concave functions of t.

Reduction to Monotone bandits: The Feed-
back MAB problem is a special case of Monotone
bandits. Each arm i has two states Si = {gi, bi}, where
rig = ri and rib = 0. Let qi(g, b) = qi(b, g) = 1. Let
f ig(t) = 1−uit and f ib(t) = vit. This is a valid reduction
since vit is the probability that if the arm was observed
in state bi during the last play, the current play will find
it in state gi. Similarly, 1− uit is the probability if the
arm was observed to be in state gi during the last play,
the current play will find it in state bi. Both vit and
1− uit increase with t, which completes the reduction.

A.1 Solving (Balance) in Polynomial Time In
the case of Feedback MAB, the f ik(t)’s in (Balance)
are specified using a closed-form expression rather than
breakpoints. This implies (Balance) does not have
polynomial size. However, as we outline below, we
can still solve (Balance) to any degree of accuracy
in polynomial time, and complementary slackness is
approximately preserved as well.

First observe that (Balance) can be written as
follows, where pi = pig−pib. It is easy to see that pi ≥ 0.

Minimize λ+
n∑
i=1

hi (Balance)

λ+ thi ≥ ri − (1− uit)pi ∀i, t ≥ 1
λ+ thi ≥ vitpi ∀i, t ≥ 1

λ =
∑
i hi

λ, hi, pi ≥ 0 ∀i

The above LP can be solved by performing a binary
search over λ. Note that if a certain λ is feasible, so are
all larger values. Fix some λ. For this λ, for each i in
turn, compute the smallest hi satisfying the first two
constraints by binary search. For some hi, choose pi
as the largest value so that vitpi touches λ + thi. This
can be computed by simple function maximization since
the LHS is a straight line and the RHS is concave and
increasing. For this pi, if λ+hi < ri−βpi, then the given
hi cannot be feasible (and neither can smaller values).
On the other hand, if λ + hi > ri − βpi, then both
hi and pi can be reduced, so that a smaller hi is also
feasible. Continue in this fashion until either hi = 0,
or there exists pi so that both the first and second set
of constraints are tight for some (possibly different) t.
This is the smallest feasible hi.

Once all hi are computed for this λ, check if λ >∑
i hi. If so, then λ can be reduced, else this choice

of λ is not feasible for the LP. Finally perform binary
search on λ until the third constraint is approximately
satisfied. This yields a (1 + ε) approximate solution to
the LP in polynomial time for any ε > 0. Note that this
process also guarantees that if hi > 0, then both the
first and second set of constraints are tight for some t,
hence ensuring complementary slackness.

A.2 Gap of the LP Relaxation Consider n i.i.d.
arms with nβ � 1, α = β/(n− 1) and r = 1. Each arm
is in state g w.p. 1/n, so that all arms are in state b
w.p. 1/e and the maximum possible reward is 1 − 1/e
even with complete information.

Lemma A.1. Whittle’s LP has value 1 − O(
√
nβ) for

nβ � 1, α = β/(n− 1) and r = 1.

Proof. Using the results in [33, 15], it is easy to show
that Whittle’s LP will construct n identical single-arm
policies such that each policy always plays in state g,
and plays in state b after some t steps. The value t is
chosen so that the rate of play for each arm is 1/n.
The rate of play is given by the formula: 1/β+1/vt

1/β+t/vt
.

Since this is 1/n, we have vt = β(t − n)/(n − 1).
The reward of each arm is 1/β

1/β+t/vt
= t−n

n(t−1) , so that
the objective of Whittle’s LP is 1 − Θ(n/t). From
vt = β(t−n)/(n−1), we obtain 1−(1−β′)t = β′(t−n),
where β′ = α+β = β n

n−1 . This holds for t = Θ(
√
n/β)

provided nβ � 1. Plugging this value of t into the value
of the LP completes the proof.

Corollary A.1. The integrality gap of Whittle’s LP
is arbitrarily close to e/(e− 1) as β → 0.
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